Modelling of directional data using Kent distributions
نویسنده
چکیده
The modelling of data on a spherical surface requires the consideration of directional probability distributions. To model asymmetrically distributed data on a three-dimensional sphere, Kent distributions are often used. The moment estimates of the parameters are typically used in modelling tasks involving Kent distributions. However, these lack a rigorous statistical treatment. The focus of the paper is to introduce a Bayesian estimation of the parameters of the Kent distribution which has not been carried out in the literature, partly because of its complex mathematical form. We employ the Bayesian informationtheoretic paradigm of Minimum Message Length (MML) to bridge this gap and derive reliable estimators. The inferred parameters are subsequently used in mixture modelling of Kent distributions. The problem of inferring the suitable number of mixture components is also addressed using the MML criterion. We demonstrate the superior performance of the derived MML-based parameter estimates against the traditional estimators. We apply the MML principle to infer mixtures of Kent distributions to model empirical data corresponding to protein conformations. We demonstrate the effectiveness of Kent models to act as improved descriptors of protein structural data as compared to commonly used von Mises-Fisher distributions.
منابع مشابه
Tree-Structured Bayesian Networks for Wrapped Cauchy Directional Distributions
Modelling the relationship between directional variables is a nearly unexplored field. The bivariate wrapped Cauchy distribution has recently emerged as the first closed family of bivariate directional distributions (marginals and conditionals belong to the same family). In this paper, we introduce a tree-structured Bayesian network suitable for modelling directional data with bivariate wrapped...
متن کاملThe multivariate Watson distribution: Maximum-likelihood estimation and other aspects
This paper studies fundamental aspects of modelling data using multivariate Watson distributions. Although these distributions are natural for modelling axially symmetric data (i.e., unit vectors where ±x are equivalent), for high-dimensions using them can be difficult—largely because for Watson distributions even basic tasks such as maximumlikelihood are numerically challenging. To tackle the ...
متن کاملMinimum Message Length based Mixture Modelling using Bivariate von Mises Distributions with Applications to Bioinformatics
The modelling of empirically observed data is commonly done using mixtures of probability distributions. In order to model angular data, directional probability distributions such as the bivariate von Mises (BVM) is typically used. The critical task involved in mixture modelling is to determine the optimal number of component probability distributions. We employ the Bayesian information-theoret...
متن کاملModelling of single mode distributions of colour data using directional statistics
Three different statistical models of colour data for use in segmentation or tracking algorithms are proposed. Results of a performance comparison of a tracking algorithm, applied to two separate applications, using each of the three different types of underlying model of the data are presented. From these a comparison of the performance of the statistical colour models themselves is
متن کاملStress Analysis of Two-directional FGM Moderately Thick Constrained Circular Plates with Non-uniform Load and Substrate Stiffness Distributions
In the present paper, bending and stress analyses of two-directional functionally graded (FG) circular plates resting on non-uniform two-parameter foundations (Winkler-Pasternak foundations) are investigated using a first-order shear-deformation theory. To enhance the accuracy of the results, the transverse stress components are derived based on the three dimensional theory of elasticity. The s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1506.08105 شماره
صفحات -
تاریخ انتشار 2015